বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper		
B.Sc. General Examinations 2021 (Under CBCS Pattern) Semester - V Subject : MATHEMATICS Paper : DSE 1A/2A/3A - T		
Full Marks : 60 Time : 3 Hours		
Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.		
[COMPLEX ANALYSIS] Group-A Answer any four questions : 1. (a) State and Proof Cauchy-Riemann Equations in Complex Analysis. (b) Let $f(z)=\left(x^{3}+2\right)+i(1-y)^{2}$. Find all the points in the complex plane where $f(z)$ is differentable and compute $f^{\prime}(z)$ of those points. Is $f(z)$ analystic of any point in the complex plane? Justify. 2. (a) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic.		

(b) Find the order of the pole of $z=\frac{\pi}{4}$ of $f(z)=\frac{1}{\cos z-\sin z}$
3. (a) Show that the unction $f(z)=\sqrt{|x y|}$ is not regular at the origin, although CauchyRiemann equations are satisfied at the point.
(b) Find the residue of $f(z)=\frac{7 z-2}{(z+1)^{2}(z-2)}$ at its poles.
4. (a) Show that the function $f(z)=\frac{z}{e^{z}-1}$ has a removal singularity at the origin.
(b) Prove the Cauchy-Goursat theorem or any simple closed curve.
5. (a) State and Proof Liouville's theorem.
(b) Prove that the function $f(z)$ given by

$$
f(z)=\left\{\begin{array}{c}
\operatorname{Im} z /|z|, \text { if } z \neq 0 \\
0,
\end{array} \text { if } z=0 \text { is not continuary at } \mathrm{z}=0\right.
$$

6. (a) State and Proof Laurent's theorem.
(b) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in a Laurent series for $|\mathrm{z}|<1$.
7. (a) Evaluate $\frac{1}{2 \pi i} \oint \frac{\mathrm{e}^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ around the circle C with equation $|\mathrm{z}|=3.6$
(b) Evaluate $\oint_{|z|=3} \frac{e^{i z}}{z^{2}(z-2)(z+5 i)} d z$ by means of the Cauchy residue theorem. 6
8. (a) State and Prove Taylor's series in complex field.
(b) Let $f(z)=\sqrt{z}, z \in c$. Test whether $f(z)$ is analytic or not at origin.

Group-B

Answer any six questions :

1. Using Cauchy's integral formula, evaluate the integral $\int_{|z|=1} \frac{\cos (2 \pi z) d z}{(2 z-1)(z-2)}$, where $|z|=1$ is positively oriented circle.
2. State and proof fundamental theorem of integral calculus in complex plane.
3. Evaluate $\int_{C} \log z d z$, where C is unit circle $|z|=1$.
4. Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series about $\mathrm{z}=0$.
5. Find residue of $\phi(z)=\cot z$ at the point $z_{n}=n \pi$ for $n=1,2, \ldots \ldots$
6. Evaluate by method of calculus of residues : $\int_{C} \frac{d z}{\left(z^{2}+1\right)(z-4)}$, where C is a circle $|z|=3$.
7. Find the radii of convergence of power series $\sum_{n=0}^{\infty} n^{2}\left(\frac{z^{2}+1}{1+i}\right)^{n}$.
8. Find the domain of convergence of power series $\sum\left(1-\frac{1}{n}\right)^{n^{2}} z^{n}$.
9. If $f(z)=z^{2}$ then prove that $\lim _{z \rightarrow \rightarrow_{0}} f(z)=z_{0}^{2}$.
10. Prove that $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$ does not exist?

OR

[MATRICES]

Group-A

Answer any four questions :

1. (a) Examine whether the set of vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ is linearly dependent or independent in R^{3}.
(b) If A and P be both $n \times n$ matrices and p be non-singular, then prove that A and $P^{-1} A P$ have the same eigen values.
2. (a) Use elementary row operations on the following matrix to obtain its inverse :

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
4 & 3 & 0 \\
6 & 4 & 1
\end{array}\right)
$$

(b) Prove that there exists a basis for every finitely generated vector space.
3. (a) Find the eigen values and corresponding eigen vectors of the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
(b) Find a matrix P such $P^{-1} A P$ is a diagonal matrix, where $A=\left[\begin{array}{rrr}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]$
4. (a) If $V=R^{2}=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in R\right\}$ and $F=R$, then show that R^{2} is a vector space over R with pointwise addition and scalar multiplication defined by $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ and $\lambda\left(a_{1}, a_{2}\right)=\left(\lambda a_{1}, \lambda a_{2}\right)$.
(b) If A and B are square matrices of order n, then prove that $\rho(A B) \geq e(A)+\rho(B)-n,[$ where $\rho(A)$ means row rank of A]
5. (a) Find the inverse of the matrix $A=\left(\begin{array}{rrr}2 & -3 & 4 \\ 1 & 0 & 1 \\ 0 & -1 & 4\end{array}\right)$

Hence obtain the solution of the equation $\mathrm{AX}=\mathrm{B}$, where $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], B=\left[\begin{array}{c}-4 \\ 0 \\ 2\end{array}\right]$
(b) Prove that eigen vectors corresponding to distinct eigen values are linearly independent. 6+6
6. (a) If $W=\left\{(x, y, z) \in R^{3}: x-4 y+3 z=0\right\}$, then show that w is a subspace of R^{3}.
(b) Find all eigen values and corresponding eigen spaces or the matrix $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$ Diagonalise A, if possible.
7. (a) Find the normal form under congruence and obtain the rank and signature of the symmetric matrix $\left[\begin{array}{lll}2 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 1\end{array}\right]$.
(b) If v be a real vector space with $\{\alpha, \beta, \gamma\}$ as a $\{\alpha+\beta+\gamma, \beta+\gamma, \gamma\}$ is also a basic of v.
8. (a) Solve the system of equations $x+2 y+z=1,3 x+y+2 z=3, x+7 y+2 z=1$ in integers.
(b) Prove that an $n \times n$ matrix A over a field F is diagonalisable if and only if there exist n eigen vectors of A which are linearly independent.

Group-B

Answer any six questions :
9. (a) Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right]$.
(b) If S be the subset of \mathbb{R}^{3} defined by $S=\left\{(x, y, z) \in \mathbb{R}^{3}: y=z=0\right\}$, show that s is a subspace of \mathbb{R}^{3}.
(c) In $\mathbb{R}^{3}, \alpha=(4,3,5), \rho=(0,1,3), \gamma=(2,1,1)$. Examine whether α is a linear combination of β and γ ? Justify.
(d) Using row transformation, find the inverse of $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
(e) Find the eigen values of the matrix $\left(\begin{array}{rr}2 & 3 \\ 4 & -5\end{array}\right)$.
(f) Find the value of m so that the vector $(\mathrm{m}, 3,1)$ is a linear combination of the vectors $(3,2,1)$ and $(2,1,0)$.
(g) Using matrix method, solve the equations $2 x+3 y=5,4 x-7 y+3=0$.
(h) Show that the rank of the transpose of a matrix is the same as that of the original matrix.
(i) Prove that the eigen values of a diagonal matrix are its diagonal elements.
(j) In a vector space V over a field F, prove that $c \alpha=\theta$ implies either $c=0$ or $\alpha=\theta$.

OR

[LINEAR ALGEBRA]

Group-A

1. Answer any four questions :
(a) (i) If U, W be two subspaces of a vector space V over a field F, then prove that the union $U \cup W$ is a subspace of V if and only if either $U \subseteq W$ or $W \subseteq U$.
(ii) Show that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent in R (set of real numbers) over Q (set of rational numbers).
(b) (i) Find dimension of $S \cap T$, where S and T are subspaces of the vector space R^{4} given by $S=\left\{(x, y, z, w) \in R^{4}: 2 x+y-z+w=0\right\}$

$$
T=\left\{(x, y, z, w) \in R^{4}: x+y+z+w=0\right\}
$$

(ii) Let V and W be vector spaces over a ield . Let $T: R^{3} \rightarrow R^{3}$ be a transormation deined by $T(x, y, z)=(x+y+z, 2 x+y+2 z, x+2 y+z)$. Prove that T is linear. Find the kernel of T and dimension of $\operatorname{Ker}(T)$.
(c) (i) Find a basis or the vector space R^{3}, that contains the vectors $(1,2,1),(3,6,2)$.
(ii) Find a basis and the dimension of the subspace S of the vector space $R_{2 \times 2}$, where
(a) S is the set of all 2×2 real diagonal matrices;
(b) S is the set of all 2×2 real symmetric matrices.
(d) (i) For what values of $k \in R$ does the set $S=\{(k, 1,1),(1, k, 1),(1,1, k)\}$ form a basis of R^{3} ?
(ii) Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T(x, y, z)=(x+2 y+3 z, 2 x+3 y+z, 3 x+y+2 z)$.
Find the matrix of T relative to the ordered bases $(-1,1,1),(1,-1,1),(1,1,-$ 1) of R^{3}.
(e) (i) Show that the set $S=\{(1,2,3,0),(2,3,0,1),(3,0,1,2)\}$ is linearly dependent in R^{4}.
(ii) A linear mapping $T: R^{3} \rightarrow R^{3}$ maps the vectors $(0,1,1),(1,0,1),(1,1,0)$ to the vectors $(1,1,-1),(1,-1,1),(1,0,0)$ respectively. Show that T is not an isomorphism. $\quad 6+6$
(f) (i) Find the dimension of the subspaces S of R^{4} given by
$S=\left\{(x, y, z, w) \in R^{4}: x+2 y-z=0,2 x+y+w=0\right\}$
(ii) Lev V and W be two finite dimensional vector spaces over a field F. Prove that they are isomorphic if and only i $\operatorname{dim} V=\operatorname{dim} W$.
(g) (i) Prove that the intersection of two subspaces of a vector space V over a field F is a subspace of V. Is the union of two subspaces of V a subspace of V ? Justify.
(ii) Determine the subspace of R^{3} spanned by the vectors $\alpha=(1,2,3), \beta=(3,1,0)$. Examine if $\gamma=(2,1,3), \delta=(-1,3,6)$ are in the subspace.
(h) (i) Prove that the subset $D[a, b]$ of all real valued diferentiable functions on $[a, b]$ is a subspace of $C[a, b]$.
(ii) Determine the linear transformation $T: R^{3} \rightarrow R^{2}$ which maps the basis vectors $(1,0,0),(0,1,0),(0,0,1)$ of R^{3} to the vectors $(1,1),(2,3),(3,2)$ of R^{3}. Find $T(1,1,0)$ and $T(6,0,-1)$. $\quad 6+6$

Group-B

2. Answer any six questions:
(a) Define isomorphism of a linear transformation.
(b) Define linear dependence ad linear independence of a set of vectors.
(c) Define inverse of a linear transformation.
(d) Examine if the set S is a subspace of the vector space $R_{2 \times 2}$, where S is the set of all 2×2 real diagonal matrices.
(e) Define kernel and image of a linear mapping.
(f) Let $S=\left\{(x, y, z) \in R^{3}: x=y=z\right\}$, Prove that S is a subspace of R^{3}.
(g) Prove that the set of vectors
$\{(1,1,0),(1,3,2),(4,9,5)\}$ is linearly dependent in R^{3}.
(h) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ be a linear trasformation defined by $T(x, y, z)=(x, y, 0)$. Find the kernel and image of T .
(i) Consider the linear operator $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(2 x-7 y, 4 x+3 y)$ and $S=\{(1,3),(2,5)\}$ be a basis on R^{2}. Find the matrix representation of T relative to S .
(j) In a vector space V over a field F , prove that $0 . \alpha=0$ for all $\alpha \in V$.

[VECTOR CALCULUS \& ANALYTICAL GEOMETRY]

Group-A

Answer any four questions :

1. (a) Prove that a vector function $\vec{F}(t)$ has constant magnitude if and only if

$$
\vec{F}(t) \cdot \frac{d \vec{F}(t)}{d t}=0 .
$$

(b) Prove that $\vec{r} \cdot \frac{d \vec{r}}{d t}=|\vec{r}| \frac{d}{d t}|\vec{r}|$.
(c) If $\vec{F}=t^{2} \hat{i}-t \hat{j}+(2 t+1) \hat{k}$ and $\vec{G}=(2 t-3) \hat{i}+\hat{j}-t \hat{k}$, then find $\frac{d}{d t}\left(\vec{F} \times \frac{d \vec{G}}{d t}\right)$ at $\mathrm{t}=1$.
2. (a) If $\varphi(x, y, z)=x y z$ and $\vec{F}(x, y, z)=x z^{2} \hat{i}-x^{2} y \hat{j}+y z \hat{k}$, find $\frac{\partial}{\partial x}(\varphi \vec{F})$ and $\frac{\partial^{2}(\varphi)}{\partial x \partial z}$ at $(0$, $0,1)$
(b) If $\vec{F}(x, y, z) x^{2} y \hat{i}+y \hat{j}+x y z \hat{k}$ and $x=z^{2}, y=3 z$, then find $\frac{d \vec{F}}{d z}$.
(c) A particle moves along a curve $x=e^{-t}, \quad y=2 \cos 3 t, z=2 \sin 3 t$, where t is the time. Determine its velocity and acceleration at $\mathrm{t}=\pi$.
3. (a) If \vec{a} is a constant vector and $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then prove that curl $(\vec{r} \times \vec{a})=-2 \vec{a}$.
(b) Find the value of $\nabla^{2}\left(r^{n} \vec{r}\right)$ where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ of $r=|\vec{r}|$.
(c) If $\vec{\nabla} \varphi=\left(y^{2}-2 x y z^{3}\right) \hat{i}+\left(3+2 x y-x^{2} z^{3}\right) \hat{j}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{k}$, then find φ.
4. (a) P be an only point on an ellipse whose two fociii are s and s^{\prime}. If $T P T^{\prime}$ is tangent at P then prove that $\left\lfloor T P S^{\prime}=\left\lfloor T^{\prime} P S\right.\right.$.
(b) Reduce the equation $7 x^{2}-6 x y-y^{2}+4 x-4 y-2=0$ to its cononical form and find the nature of the conic.
5. (a) Find the values of C for which the plane $x+y+z=e$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$.
(b) Find the equation of the cylinder whose guiding curve is the circle through the points $(1,0,0),(0,1,0)$ and $(0,0,1)$
(c) If the equation $a x^{2}+b y^{2}+c z^{2}-4 a x+3 b y-6 c z+5=0$ represents a sphere for suitable values of a, b, c; find its centre.
6. (a) Find the equation of the right circular cylinder which passes through $(3,-1,1)$ and has the axis $\frac{x-1}{2}=\frac{y+3}{-1}=z-2$.
(b) Find the equation of the sphere having its centre on line $5 y+2 z=0=2 x-3 y$ and passing through the points $(0,-2,-4)$ and $(2,-1,1)$.
7. (a) Sketch the graph of $9 x^{2}+16 y^{2}=144$.
(b) Correct or justify the statement :

$$
x^{2}+x y-2 y^{2}+3 y-1=0 \text { represents an ellipse. }
$$

(c) Find the centre and the radius of the circle given by $x^{2}+y^{2}+z^{2}-2 y-4 z-11=0$,

$$
x+2 y+2 z=15
$$

$$
6+4+2=12
$$

8. (a) Prove by vector method that if two medians of a triangle be equal then the triangle is isosceles.
(b) If $\vec{r}=(x \cos y) \vec{i}+(x \sin y) \hat{j}+\left(2 e^{m y}\right) \hat{k}$ find $\left[\begin{array}{lll}\frac{\partial \vec{r}}{d x} & \frac{\partial \vec{r}}{\partial y} & \frac{\partial^{2} \vec{r}}{\partial x \partial y}\end{array}\right]$
(c) Find curl grad ϕ, for any scalar function ϕ.

Group-B

Answer any six questions :
9. (a) Detemine the nature of the locus given by $x^{2}+6 x y+9 y^{2}-5 x-15 y+6=0$.
(b) Sketch the graph of $y=\sqrt{x}, x \geq 0$.
(c) Find the equation of the sphere which has $(3,4,-1)$ and $(4,2,3)$ as the end points of a diameter.
(d) If $\frac{d^{2} \vec{r}}{d t^{2}}=\vec{r}$ then show that $\vec{r} \times \frac{d \vec{r}}{d t}$ is a constant vector.
(e) Are these three vectors $4 \hat{i}+2 \hat{j}+\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}$ and $8 \hat{i}+7 \hat{k}$ co-planar? Justiy your answer.
(f) If $\vec{F}(t)=\left(e^{-t}\right) \hat{i}+\log \left(1+t^{2}\right) \hat{j}-(\tan t) \hat{k}$, find $\left|\frac{d^{2} \vec{F}}{d t^{2}}\right|$
(g) If $\vec{F}=\left(2 x y-x^{2}\right) \hat{i}+\left(e^{2 x y}-y \cos x\right) \hat{j}+\left(x^{2} \sin y\right) \hat{k}$ find $\frac{\partial^{2} \vec{F}}{\partial x^{2}}$ and $\frac{\partial^{2} \vec{F}}{\partial x \partial y}$.
(h) Find the equation of the right circular cylinder whose radius is 1 and axis is the x -axis.
(i) Find the equation of the sphere passing through the points $(0,0,0),(2,0,0)$, $(0,3,0)$ and $(0,0,4)$.
(j) If $\vec{A}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then find $\operatorname{div} \vec{A}$ and curl \vec{A}.

